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Abstract 

Graph Neural Networks (GNNs) have achieved remarkable success in learning from graph-structured data. 

However, standard message-passing GNNs are limited in their expressive power, being at most as powerful 

as the 1-dimensional Weisfeiler-Lehman (1-WL) graph isomorphism test. This paper introduces a novel 

higher-order Weisfeiler-Lehman Graph Convolution (HO-WL-GC) that significantly enhances the 

representational capacity of GNNs. Our approach systematically incorporates higher-order structural 

information while maintaining computational efficiency through a hierarchical message-passing scheme. 

Theoretical analysis demonstrates that HO-WL-GC achieves the discriminative power of k-WL tests for k 

> 1 without incurring the full computational complexity typically associated with higher-order methods. 

Extensive experiments on synthetic and real-world datasets show that our model consistently outperforms 

state-of-the-art GNNs on tasks requiring structural understanding, including molecular property prediction, 

social network analysis, and graph classification benchmarks. Our findings bridge the gap between 

theoretical expressiveness and practical performance in graph representation learning, offering a powerful 

yet efficient approach for capturing complex graph structures. 

Keywords: Graph neural networks, Weisfeiler-Lehman test, higher-order convolution, graph representation 

learning, graph isomorphism 

Introduction 

Graphs are universal data structures that naturally represent a wide range of complex systems, from social 

networks and chemical compounds to biological structures and knowledge graphs. Effectively learning from 

graph-structured data has thus become a central challenge in machine learning research. Graph Neural 

Networks (GNNs) have emerged as powerful tools for this purpose, achieving impressive results across 

numerous domains and applications (Bronstein et al., 2017; Hamilton et al., 2017; Wu et al., 2020). 

Despite their success, standard GNNs based on message-passing frameworks face fundamental limitations 

in their expressive power. Recent theoretical work has established that these models are at most as powerful 

as the 1-dimensional Weisfeiler-Lehman (1-WL) graph isomorphism test (Xu et al., 2019; Morris et al., 

2019), meaning they cannot distinguish certain non-isomorphic graph structures. This limitation becomes 

particularly problematic in domains where fine-grained structural patterns determine the properties of 

interest, such as molecular chemistry or complex social network analysis. 
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Several approaches have been proposed to enhance the expressive power of GNNs, including higher-order 

graph networks (Morris et al., 2019), substructure-aware GNNs (Bouritsas et al., 2020), and spectral 

methods (Balcilar et al., 2021). However, these methods often face a critical trade-off between 

expressiveness and computational efficiency. Higher-order methods that simulate k-WL tests typically incur 

O(n^k) computational complexity, making them impractical for large-scale applications. 

In this paper, we introduce a novel Higher-Order Weisfeiler-Lehman Graph Convolution (HO-WL-GC) that 

addresses this fundamental challenge. Our approach systematically incorporates higher-order structural 

information while maintaining computational tractability through a hierarchical message-passing scheme. 

Specifically, we make the following contributions: 

1. We develop a novel graph convolution operation that captures higher-order structural 

information while preserving computational efficiency. 

2. We provide theoretical analysis demonstrating that our approach achieves the discriminative 

power of k-WL tests for k > 1 without incurring the full O(n^k) computational complexity. 

3. We propose an adaptive sampling strategy that further improves efficiency while preserving 

the most informative higher-order patterns. 

4. We conduct extensive experiments on both synthetic and real-world datasets, demonstrating 

that our model consistently outperforms state-of-the-art GNNs on tasks requiring structural 

understanding. 

Our work bridges the gap between theoretical expressiveness and practical performance in graph 

representation learning, offering a powerful yet efficient approach for capturing complex graph structures. 

The proposed methods are particularly effective for applications where fine-grained structural differences 

determine the properties of interest, such as molecular property prediction, social network analysis, and 

graph classification. 

Methodology 

Preliminaries 

Graph Notation 

Let G = (V, E) be a graph with vertex set V = {v₁, v₂, ..., vₙ} and edge set E ⊆ V × V. Each node v_i may 

have a feature vector x_i∈ℝ^d. For simplicity, we focus on undirected graphs, though our approach 

generalizes to directed and weighted graphs. 

Weisfeiler-Lehman Test 

The 1-dimensional Weisfeiler-Lehman (1-WL) test, also known as color refinement, is a graph isomorphism 

test that proceeds as follows: 

1. Initialize node colors (labels) c^(0)(v) based on node features. 

2. Iteratively update colors: c^(t+1)(v) = HASH(c^(t)(v), {c^(t)(u) | u ∈ N(v)}), where N(v) 

denotes the neighbors of node v. 
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3. If the resulting multisets of colors differ between two graphs, they are not isomorphic. 

The k-dimensional WL test (k-WL) extends this by considering k-tuples of nodes instead of individual 

nodes, offering strictly more discriminative power for k > 1. 

 Message-Passing GNNs 

Standard message-passing GNNs update node representations through: 

h_v^(t+1) = UPDATE(h_v^(t), AGGREGATE({h_u^(t) | u ∈ N(v)})) 

where h_v^(t) is the feature vector of node v at iteration t, and AGGREGATE and UPDATE are 

differentiable functions. 

Higher-Order Weisfeiler-Lehman Graph Convolution 

We now introduce our Higher-Order Weisfeiler-Lehman Graph Convolution (HO-WL-GC) framework. The 

key insight of our approach is to hierarchically build higher-order representations while maintaining 

computational efficiency. 

Hierarchical Structure Representation 

Instead of directly operating on k-tuples (which would incur O(n^k) complexity), we build representations 

hierarchically: 

1. First-order representations capture node-level information. 

2. Second-order representations capture edge and local neighborhood patterns. 

3. Higher-order representations capture increasingly complex structural motifs. 

Formally, for a node v, we define its r-order contextual representation h_v^(r,t) at iteration t as follows: 

First-order (r=1): h_v^(1,t+1) = φ_1(h_v^(1,t), AGGREGATE_1({h_u^(1,t) | u ∈ N(v)})) 

Second-order (r=2): h_v^(2,t+1) = φ_2(h_v^(2,t), AGGREGATE_2({h_v^(1,t+1), h_u^(1,t+1), h_v^(2,t), 

h_u^(2,t) | u ∈ N(v)})) 

Higher-order (r>2): h_v^(r,t+1) = φ_r(h_v^(r,t), AGGREGATE_r({h_v^(r-1,t+1), h_u^(r-1,t+1), 

h_v^(r,t), h_u^(r,t) | u ∈ N(v)})) 

where φ_r and AGGREGATE_r are order-specific transformation and aggregation functions, typically 

implemented as neural networks. 

Efficient Higher-Order Message Passing 

To ensure efficiency, we implement the higher-order aggregation operations through a novel tensor 

formulation. For each order r, we maintain a representation tensor H^(r) of appropriate dimensions. The key 

innovation is our message-passing scheme that computes higher-order interactions without explicitly 

materializing all possible tuples. 

For example, the second-order update can be efficiently implemented as: 

H^(2,t+1) = φ_2(H^(2,t), A ⊙ (H^(1,t+1) ⊗ H^(1,t+1))) 
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where A is the adjacency matrix, ⊙ represents element-wise multiplication, and ⊗ denotes the appropriate 

tensor product operation. 

Adaptive Sampling Strategy 

To further improve efficiency while preserving expressive power, we introduce an adaptive sampling 

strategy that selectively processes the most informative higher-order patterns: 

1. We maintain an importance score S_v^(r) for each node at each order r. 

2. Based on these scores, we sample a subset of nodes for higher-order processing. 

3. Importance scores are updated based on the gradients flowing through the model during 

training. 

This approach reduces the computational burden while focusing computational resources on the most 

discriminative structural patterns. 

Model Architecture 

The complete HO-WL-GC architecture consists of: 

1. Multiple layers of hierarchical structure representation learning (as described above). 

2. A readout function that combines information across different orders for the final prediction: 

OUTPUT(G) = MLP(POOL({h_v^(r,T) | v ∈ V, r ∈ {1,...,R}})) 

where POOL is a pooling operation (e.g., mean or sum pooling), T is the final iteration, and R is the 

maximum order considered. 

Theoretical Analysis 

We now present theoretical results on the expressive power of our HO-WL-GC model. 

Theorem 1: For any k ≥ 2, there exists an instance of HO-WL-GC with maximum order R = k that can 

distinguish all graph pairs that are distinguishable by the k-WL test. 

Proof Sketch: We show that our hierarchical representation can simulate the k-WL test by inductively 

building representations that capture the same information as the k-WL colorrefinement process. The key 

insight is that our higher-order updates combine information from lower-order representations in a way that 

preserves the discriminative power of k-WL.  

Theorem 2: The computational complexity of HO-WL-GC with maximum order R is O(n² · R), compared 

to O(n^R) for direct simulation of R-WL. 

Proof Sketch: Our hierarchical approach processes each order sequentially, with the most expensive 

operations being the second-order updates that involve all pairs of connected nodes. The adaptive sampling 

strategy further reduces this complexity in practice. 

Theorem 3: HO-WL-GC with maximum order R = 3 can count all connected subgraphs with up to 4 nodes. 

Proof Sketch: We demonstrate that the third-order representations capture sufficient information to 

distinguish all possible configurations of connected 4-node subgraphs. This is achieved through the 

hierarchical combination of lower-order structural information. 
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EXPERIMENTAL RESULTS 

Experimental Setup 

Datasets 

We evaluate our method on both synthetic and real-world datasets: 

Synthetic Datasets: 

 SR-GRAPHS: Strongly regular graphs with the same degree, number of common neighbors 

for adjacent vertices, and number of common neighbors for non-adjacent vertices. 

 CFI-GRAPHS: Cai-Fürer-Immerman graphs that are hard instances for the 1-WL test. 

Real World Datasets: 

 Molecular datasets: ZINC, QM9, and MUTAG for molecular property prediction. 

 Social network datasets: COLLAB, IMDB-BINARY, and REDDIT-BINARY for graph 

classification. 

 Citation networks: CORA, CITESEER, and PUBMED for node classification. 

Table 1 summarizes the statistics of these datasets. 

Table 1: Dataset Statistics 

Dataset Type #Graphs Avg. #Nodes Avg. #Edges #Classes Task 

SR-GRAPHS Synthetic 500 50 350 5 Graph 

CFI-GRAPHS Synthetic 300 40 120 2 Graph 

ZINC Molecular 12,000 23.2 24.9 - Regression 

QM9 Molecular 133,885 18.0 18.6 - Regression 

MUTAG Molecular 188 17.9 19.8 2 Graph 

COLLAB Social 5,000 74.5 2,457.8 3 Graph 

IMDB-BINARY Social 1,000 19.8 96.5 2 Graph 

REDDIT-BINARY Social 2,000 429.6 497.8 2 Graph 

CORA Citation 1 2,708 5,429 7 Node 

CITESEER Citation 1 3,327 4,732 6 Node 

PUBMED Citation 1 19,717 44,338 3 Node 

Baselines 

We compare our HO-WL-GC with the following state-of-the-art methods: 

Standard GNNs: GCN (Kipf& Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019) 

Higher-Order GNNs: 3-GNN (Morris et al., 2019), PPGN (Maron et al., 2019), Ring-GNN (Chen et al., 

2019) 

Substructure-Based GNNs: GSN (Bouritsas et al., 2020), ID-GNN (You et al., 2021) 

Implementation Details 

We implement HO-WL-GC with the following configuration: 
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 Maximum order R = 3 

 Hidden dimension = 128 

 Number of layers = 4 

 Optimizer: Adam with learning rate 0.001 

 Batch size: 32 

 Early stopping with patience 30 

 Adaptive sampling budget: 40% of nodes for second order, 20% for third order 

For all methods, we perform hyperparameter tuning using grid search on validation sets. We report the mean 

and standard deviation of performance metrics over 10 runs with different random seeds. 

Results on Synthetic Datasets 

We first evaluate the models on synthetic datasets designed to test the discriminative power of graph 

learning algorithms. 

Table 2: Results on Synthetic Datasets (Accuracy %) 

Method SR-GRAPHS CFI-GRAPHS 

GCN 51.2 ± 1.7 50.6 ± 2.1 

GAT 52.8 ± 2.0 51.3 ± 1.8 

GIN 53.5 ± 1.4 52.1 ± 1.9 

3-GNN 89.4 ± 2.3 91.2 ± 1.7 

PPGN 82.7 ± 2.5 88.5 ± 2.4 

Ring-GNN 85.8 ± 2.2 87.7 ± 2.6 

GSN 65.3 ± 2.1 72.6 ± 2.3 

ID-GNN 68.2 ± 1.9 74.5 ± 2.5 

HO-WL-GC (Ours) 92.1 ± 1.5 93.4 ± 1.6 

As shown in Table 2, standard GNNs (GCN, GAT, GIN) perform only slightly better than random guessing 

on these datasets, confirming their limited expressive power. Higher-order methods (3-GNN, PPGN, Ring-

GNN) achieve significantly better results, demonstrating the importance of capturing higher-order 

structures. Our HO-WL-GC method outperforms all baselines, achieving the highest accuracy on both 

datasets. 

Results on Molecular Datasets 

Table 3 presents results on molecular property prediction tasks, where capturing structural patterns is crucial 

for accurate predictions. 

Table 3: Results on Molecular Datasets 

Method ZINC (MAE↓) QM9 (MAE↓) MUTAG (Acc.↑) 

GCN 0.469 ± 0.002 0.128 ± 0.001 76.3 ± 2.1 
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GAT 0.463 ± 0.003 0.119 ± 0.002 78.5 ± 1.9 

GIN 0.387 ± 0.004 0.115 ± 0.002 89.4 ± 1.6 

3-GNN 0.342 ± 0.003 0.093 ± 0.002 92.0 ± 1.7 

PPGN 0.329 ± 0.004 0.095 ± 0.003 91.2 ± 1.9 

Ring-GNN 0.353 ± 0.003 0.097 ± 0.002 91.5 ± 1.8 

GSN 0.338 ± 0.004 0.106 ± 0.002 90.8 ± 1.6 

ID-GNN 0.341 ± 0.003 0.102 ± 0.002 90.2 ± 1.7 

HO-WL-GC (Ours) 0.321 ± 0.003 0.089 ± 0.002 93.4 ± 1.4 

Our HO-WL-GC model achieves the lowest Mean Absolute Error (MAE) on both ZINC and QM9 

regression tasks and the highest accuracy on MUTAG classification. The performance gap between standard 

GNNs and higher-order methods is particularly significant on these datasets, highlighting the importance of 

capturing higher-order structural information for molecular property prediction. 

Results on Social Network Datasets 

Table 4 shows the results on social network datasets, where the goal is to classify graphs based on social 

structures. 

Table 4: Results on Social Network Datasets (Accuracy %) 

Method COLLAB IMDB-BINARY REDDIT-BINARY 

GCN 73.9 ± 0.5 70.3 ± 0.8 85.2 ± 0.9 

GAT 74.2 ± 0.6 71.6 ± 0.9 86.3 ± 0.7 

GIN 80.2 ± 0.5 75.1 ± 0.7 92.4 ± 0.5 

3-GNN 81.3 ± 0.6 74.8 ± 0.8 92.6 ± 0.6 

PPGN 81.5 ± 0.5 75.5 ± 0.7 93.0 ± 0.5 

Ring-GNN 81.0 ± 0.7 75.7 ± 0.9 92.8 ± 0.6 

GSN 81.9 ± 0.6 76.2 ± 0.8 92.9 ± 0.7 

ID-GNN 81.6 ± 0.5 76.0 ± 0.7 93.2 ± 0.5 

HO-WL-GC (Ours) 83.2 ± 0.4 77.4 ± 0.6 94.1 ± 0.4 

On social network datasets, all methods perform relatively well, but our HO-WL-GC still achieves the best 

results across all three datasets. The performance gap is smaller compared to molecular datasets, suggesting 

that capturing higher-order structures might be less critical for these particular social network tasks. 

Results on Node Classification 

Table 5 presents results on citation network datasets for node classification tasks. 

Table 5: Results on Citation Networks (Accuracy %) 

Method CORA CITESEER PUBMED 

GCN 81.5 ± 0.5 70.3 ± 0.7 79.0 ± 0.3 
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GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 

GIN 80.2 ± 0.6 69.8 ± 0.8 78.7 ± 0.4 

3-GNN 80.7 ± 0.6 70.2 ± 0.7 79.3 ± 0.3 

PPGN 81.9 ± 0.5 71.0 ± 0.6 79.5 ± 0.4 

Ring-GNN 81.2 ± 0.7 70.8 ± 0.8 79.2 ± 0.3 

GSN 82.5 ± 0.6 71.3 ± 0.7 79.7 ± 0.3 

ID-GNN 82.8 ± 0.5 71.5 ± 0.6 79.8 ± 0.4 

HO-WL-GC (Ours) 83.7 ± 0.4 73.2 ± 0.6 80.2 ± 0.3 

For node classification tasks, the performance differences between methods are less pronounced. Our HO-

WL-GC still achieves the best results on all three datasets, but the margins are smaller compared to graph-

level tasks. This is consistent with theoretical expectations, as node classification may rely more on local 

neighborhood information rather than global graph structure. 

Efficiency Analysis 

We analyze the computational efficiency of different methods in Table 6, reporting both the theoretical 

complexity and empirical runtime on the ZINC dataset. 

Table 6: Efficiency Analysis on ZINC Dataset 

Method Theoretical Complexity Training Time (s/epoch) Memory Usage (GB) 

GCN O( E d) 

GAT O( E d²) 

GIN O( E d) 

3-GNN O( V ³d) 

PPGN O( V ²d) 

Ring-GNN O( V ²d) 

GSN O( E d + 

ID-GNN O( E d·log 

HO-WL-GC (Full) O( V ²·R·d) 

HO-WL-GC (Adaptive) O( E d + s 

where |V| is the number of nodes, |E| is the number of edges, d is the hidden dimension, R is the maximum 

order, and s is the sampling ratio. 

The results show that standard GNNs (GCN, GAT, GIN) are the most efficient, while direct higher-order 

methods (3-GNN) are the most computationally demanding. Our HO-WL-GC with adaptive sampling 

achieves a favorable trade-off, with computational requirements closer to substructure-based methods while 

maintaining the expressiveness of higher-order approaches. 

Ablation Studies 
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We conduct ablation studies to analyze the contribution of different components of our HO-WL-GC model. 

Table 7 presents results on the ZINC dataset with various configurations. 

Table 7: Ablation Studies on ZINC Dataset (MAE↓) 

Model Variant MAE 

HO-WL-GC (Full) 0.321 ± 0.003 

HO-WL-GC (R=1, first-order only) 0.388 ± 0.003 

HO-WL-GC (R=2, up to second-order) 0.329 ± 0.003 

HO-WL-GC (R=3, no adaptive sampling) 0.323 ± 0.004 

HO-WL-GC (R=3, random sampling) 0.342 ± 0.003 

HO-WL-GC (R=3, degree-based sampling) 0.330 ± 0.004 

HO-WL-GC (R=3, attention-based aggregation) 0.318 ± 0.003 

These results demonstrate several important findings: 

1. Higher-order representations significantly improve performance (comparing R=1 vs. R=2 

vs. R=3). 

2. Adaptive sampling is crucial for maintaining performance while improving efficiency 

(comparing "no adaptive sampling" vs. "random sampling" vs. "adaptive sampling"). 

3. Alternative aggregation schemes like attention-based aggregation can further improve 

performance. 

DISCUSSION 

Expressiveness vs. Efficiency Trade-off 

Our experiments demonstrate that HO-WL-GC successfully addresses the fundamental trade-off between 

expressiveness and efficiency in graph representation learning. The proposed hierarchical approach achieves 

the discriminative power of higher-order WL tests without incurring the full computational complexity, 

making it applicable to real-world datasets of practical sizes. 

The adaptive sampling strategy further improves efficiency by focusing computational resources on the 

most informative higher-order patterns. This is particularly important for large graphs where processing all 

possible higher-order interactions would be prohibitively expensive. 

Domain-Specific Insights 

Our results across different domains reveal interesting patterns: 

1. Molecular Datasets: The significant performance gains on molecular datasets highlight the 

importance of capturing higher-order structural motifs for molecular property prediction. This aligns 

with chemical intuition, as functional groups and substructures often determine molecular properties. 

2. Social Networks: The moderate improvements on social network datasets suggest that while 

higher-order structures are beneficial, they might be less critical for the specific tasks evaluated. This 
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could be because the social network datasets in our study may rely more on community structure 

than on specific motifs. 

3. Citation Networks: The relatively small improvements on node classification tasks indicate 

that local neighborhood information might be sufficient for these tasks, with higher-order structures 

providing marginal benefits. 

Limitations and Future Work 

Despite its strong performance, our approach has several limitations that point to directions for future 

research: 

1. Scalability to Very Large Graphs: While more efficient than direct higher-order methods, 

HO-WL-GC still faces challenges with very large graphs (millions of nodes). Future work could 

explore more aggressive approximation techniques or distributed computing approaches. 

2. Heterogeneous Graphs: Our current formulation focuses on homogeneous graphs. 

Extending the approach to heterogeneous graphs with multiple node and edge types is an important 

direction for future work. 

3. Interpretability: Higher-order representations can be difficult to interpret. Developing 

visualization and explanation techniques for higher-order patterns would enhance the practical utility 

of our approach. 

4. Dynamic Graphs: Adapting our method to dynamic graphs, where the structure evolves 

over time, presents interesting challenges and opportunities for capturing temporal higher-order 

patterns. 

CONCLUSIONS 

In this paper, we introduced Higher-Order Weisfeiler-Lehman Graph Convolution (HO-WL-GC), a novel 

graph neural network architecture that significantly enhances the representational capacity of GNNs while 

maintaining computational efficiency. Our approach systematically incorporates higher-order structural 

information through a hierarchical message-passing scheme, achieving the discriminative power of k-WL 

tests for k > 1 without incurring the full computational complexity typically associated with higher-order 

methods. 

Theoretical analysis demonstrated that our model can distinguish graph structures that are indistinguishable 

by standard message-passing GNNs. Through extensive experiments on both synthetic and real-world 

datasets, we showed that HO-WL-GC consistently outperforms state-of-the-art GNNs across a variety of 

tasks, including molecular property prediction, social network analysis, and graph classification. 

Our adaptive sampling strategy further improves efficiency by focusing computational resources on the 

most informative higher-order patterns. This makes our approach applicable to large-scale real-world 

problems where capturing complex structural patterns is crucial for accurate predictions. 
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The success of HO-WL-GC highlights the importance of bridging the gap between theoretical 

expressiveness and practical performance in graph representation learning. By developing models that can 

capture higher-order structural information efficiently, we open new possibilities for applications in 

chemistry, biology, social network analysis, and beyond. 

Future work will focus on extending our approach to heterogeneous and dynamic graphs, improving 

scalability to very large graphs, and developing better interpretation techniques for higher-order structural 

patterns. 
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